Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Translational and Clinical Pharmacology ; : 134-140, 2019.
Article in English | WPRIM | ID: wpr-786681

ABSTRACT

Combination therapies of antihypertensive drugs are recommended in cases where hypertension is not controlled by monotherapy. This study aimed to compare the pharmacokinetics (PKs) between fixed-dose combination (FDC) of fimasartan/amlodipine 60/10 mg and the corresponding loose combination. Because of the high intra-subject variability for maximum plasma concentration (C(max)) of fimasartan, a randomized, open-label, 3×3 partial replicated crossover design was adopted. Subjects received a single dose of FDC of fimasartan/amlodipine 60/10 mg or the corresponding loose combination in each period. Blood samples for PK analysis were collected up to 48 hours for fimasartan and 144 hours for amlodipine, respectively. Geometric mean ratios (GMRs) and its 90% confidence intervals (CIs) of the FDC to the loose combination for C(max) and area under the concentration-time curve from time 0 to the last quantifiable time point (AUC(last)) were calculated. Sixty healthy subjects were randomized, and 57 subjects completed the study. The concentration-time profiles of fimasartan and amlodipine were similar between the FDC and loose combination. The GMRs (90% CIs) of the FDC to the loose combination for C(max) and AUC(last) were 1.0440 (0.9202–1.1844) and 1.0412 (0.9775–1.1090) for fimasartan, and 1.0430 (1.0156–1.0711) and 1.0339 (1.0055–1.0631) for amlodipine, respectively. The GMRs and its 90% CIs for C(max) and AUC(last) of fimasartan and amlodipine were included not only in the scaled bioequivalence criteria but also in the conventional bioequivalence criteria. In conclusion, FDC of fimasartan/amlodipine 60/10 mg showed comparable PK profiles with the corresponding loose combination, which suggests their bioequivalence.


Subject(s)
Amlodipine , Antihypertensive Agents , Cross-Over Studies , Healthy Volunteers , Hypertension , Pharmacokinetics , Plasma , Therapeutic Equivalency
2.
The Korean Journal of Physiology and Pharmacology ; : 661-670, 2018.
Article in English | WPRIM | ID: wpr-727859

ABSTRACT

Fimasartan, a new angiotensin II receptor antagonist, reduces myocyte damage and stabilizes atherosclerotic plaque through its anti-inflammatory effect in animal studies. We investigated the protective effects of pretreatment with fimasartan on ischemia-reperfusion injury (IRI) in a mouse model of ischemic renal damage. C57BL/6 mice were pretreated with or without 5 (IR-F5) or 10 (IR-F10) mg/kg/day fimasartan for 3 days. Renal ischemia was induced by clamping bilateral renal vascular pedicles for 30 min. Histology, pro-inflammatory cytokines, and apoptosis assays were evaluated 24 h after IRI. Compared to the untreated group, blood urea nitrogen and serum creatinine levels were significantly lower in the IR-F10 group. IR-F10 kidneys showed less tubular necrosis and interstitial fibrosis than untreated kidneys. The expression of F4/80, a macrophage infiltration marker, and tumor necrosis factor (TNF)-α, decreased in the IR-F10 group. High-dose fimasartan treatment attenuated the upregulation of TNF-α, interleukin (IL)-1β, and IL-6 in ischemic kidneys. Fewer TUNEL positive cells were observed in IR-F10 compared to control mice. Fimasartan caused a significant decrease in caspase-3 activity and the level of Bax, and increased the Bcl-2 level. Fimasartan preserved renal function and tubular architecture from IRI in a mouse ischemic renal injury model. Fimasartan also attenuated upregulation of inflammatory cytokines and decreased apoptosis of renal tubular cells. Our results suggest that fimasartan inhibited the process of tubular injury by preventing apoptosis induced by the inflammatory pathway.


Subject(s)
Animals , Mice , Apoptosis , Blood Urea Nitrogen , Caspase 3 , Constriction , Creatinine , Cytokines , Fibrosis , In Situ Nick-End Labeling , Interleukin-6 , Interleukins , Ischemia , Kidney , Macrophages , Muscle Cells , Necrosis , Plaque, Atherosclerotic , Receptors, Angiotensin , Reperfusion Injury , Tumor Necrosis Factor-alpha , Up-Regulation
3.
Translational and Clinical Pharmacology ; : 118-127, 2018.
Article in English | WPRIM | ID: wpr-742413

ABSTRACT

The safety and efficacy of fimasartan have been evaluated through post-marketing surveillance in real world clinical practice. The multi-center, prospective, open-label and non-interventional study. A total of 3,945 patients (3,729 patients for safety assessment and 3,473 patients for efficacy assessment) were screened in patients with essential hypertension in 89 study centers from 9 September 2010 through 8 September 2016. Among the total patients, 2,893 patients (77.6%) were administered fimasartan for 24 weeks or longer and were classified as ‘patients with long-term follow-up’, and the additional safety and efficacy analysis were performed. The improvement was defined as systolic blood pressure (SBP) controlled to ≤ 140 mmHg or decreased SBP differences ≥ 20 mmHg after treatment or diastolic blood pressure (DBP) controlled to ≤ 90 mmHg or decreased DBP differences ≥ 10 mmHg after treatment. Adverse drug reactions (ADRs) were reported in 3.8% patients; dizziness, and hypotension were the most frequently reported ADRs in total patients. The results of patients with long-term follow-up were comparable with total patients. The overall improvement rate in all efficacy assessment at the last visit was 87.1% (3,025/3,473 patients). The overall improvement rate of the patients with long-term follow-up was 88.9%. Fimasartan was well tolerated, with no new safety concerns identified and an effective treatment in the real world clinical practice for Korean patients with hypertension.


Subject(s)
Humans , Blood Pressure , Dizziness , Drug-Related Side Effects and Adverse Reactions , Follow-Up Studies , Hypertension , Hypotension , Korea , Marketing , Prospective Studies
4.
Arch. cardiol. Méx ; 87(4): 316-325, oct.-dic. 2017. tab, graf
Article in English | LILACS | ID: biblio-887542

ABSTRACT

Abstract: Objective: To evaluate efficacy and safety of 60 mg and 120 mg Fimasartan (FMS) alone or combined with 12.5 mg hydrochlorothiazide (HCTZ) in a Mexican population. Methods: A six month, treat-to-target, open study was conducted on subjects with grade 1-2 hypertension. The subjects were initially treated with 60 mg FMS once daily. In week 8, those with Diastolic Blood Pressure (DBP) <90 mmHg continued on the same FMS dose during the rest of the study, while those with DBP ≥90 mmHg were randomised to either 120 mg FMS or 60 mg FMS + 12.5 mg HCTZ once daily. In week 12, randomised subjects with DBP ≥90 mmHg received 120 mg FMS + 12.5 mg HCTZ, while those achieving target continued with their assigned treatment until the end of the study. Results: FMS 60 mg (n = 272) decreased both DBP and Systolic Blood Pressure (SBP) by 11.3 ± 8.9 (p<.0001) and 16.0 ± 14.1 (p<.0001) mmHg, respectively, with 75.4% of subjects reaching the treatment target. Subjects assigned to FMS 120 mg, FMS 60 mg + HCTZ 12.5 mg, or FMS 120 mg + HCTZ 12.5 mg once daily, showed significant reductions in DBP and SBP with their assigned treatment. At the end of the study, 237/272 subjects (87.1%) achieved a DBP < 90 mmHg and an SBP<140 mmHg. The most frequently reported adverse reactions included headache (3.7%), dry mouth (1.1%), transient liver enzyme increase (1.1%), and dizziness (0.7%). Conclusion: Fimasartan is safe and effective in Mexican subjects with grade 1-2 essential hypertension.


Resumen: Objetivo: Evaluar la eficacia y la seguridad de 60 y 120 mg de fimasartán (FMS) solo o combinado con 12.5 mg de hidroclorotiazida (HCTZ) en población mexicana. Métodos: Estudio abierto, de 24 semanas, con tratamiento escalado hasta el objetivo terapéutico en sujetos hipertensos grados 1-2. Tratamiento inicial: FMS 60 mg una vez al día; en la semana 8, los sujetos con presión arterial diastólica (PAD) <90 mmHg mantuvieron su tratamiento inicial durante el estudio, mientras que los sujetos con PAD ≥90 mmHg fueron aleatorizados a 120 mg de FMS o a 60 mg de FMS + 12.5 mg de HCTZ. En la semana 12, los sujetos aleatorizados con PAD ≥90 mmHg recibieron 120 mg de FMS + 12.5 mg de HCTZ; quienes alcanzaron el objetivo terapéutico mantuvieron su tratamiento asignado hasta finalizar el estudio. Resultados: FMS 60 mg (n = 272) disminuyó la PAD y la presión arterial sistólica (PAS) en 11.3 ± 8.9 (p < 0.0001) y 16.0 ± 14.1 (p < 0.0001) mmHg, respectivamente, con logro del objetivo de tratamiento en el 75.4% de los sujetos. Los sujetos asignados a 120 mg de FMS, a 60 mg de FMS + 12.5 mg de HCTZ 12.5 y a 120 mg de FMS + 12.5 mg de HCTZ mostraron reducciones significativas de PAD y PAS; al final del estudio, 237/272 sujetos (87.1%) lograron PAD <90 y PAS <140 mmHg. Las reacciones adversas más frecuentemente reportadas fueron: cefalea (3.7%), boca seca (1.1%), incremento de enzimas hepáticas (1.1%) y mareo (0.7%). Conclusión: FMS es seguro y eficaz en sujetos mexicanos con hipertensión esencial de grados 1-2.


Subject(s)
Humans , Male , Female , Middle Aged , Pyrimidines/administration & dosage , Tetrazoles/administration & dosage , Biphenyl Compounds/administration & dosage , Essential Hypertension/drug therapy , Hydrochlorothiazide/administration & dosage , Antihypertensive Agents/administration & dosage , Pyrimidines/adverse effects , Tetrazoles/adverse effects , Biphenyl Compounds/adverse effects , Severity of Illness Index , Prospective Studies , Treatment Outcome , Drug Therapy, Combination , Mexico , Antihypertensive Agents/adverse effects
5.
Translational and Clinical Pharmacology ; : 43-51, 2017.
Article in English | WPRIM | ID: wpr-196848

ABSTRACT

Fimasartan is a nonpeptide angiotensin II receptor blocker. In a previous study that compared the pharmacokinetics (PK) of fimasartan between patients with hepatic impairment (cirrhosis) and healthy subjects, the exposure to fimasartan was found to be higher in patients, but the decrease of blood pressure (BP) was not clinically significant in those with moderate hepatic impairment. The aims of this study were to develop a population PK-pharmacodynamic (PD) model of fimasartan and to evaluate the effect of hepatic function on BP reduction by fimasartan using previously published data. A 2-compartment linear model with mixed zero-order absorption followed by first-order absorption with a lag time adequately described fimasartan PK, and the effect of fimasartan on BP changes was well explained by the inhibitory sigmoid function in the turnover PK-PD model overlaid with a model of circadian rhythm (NONMEM version 7.2). According to our PD model, the lower BP responses in hepatic impairment were the result of the increased fimasartan EC₅₀ in patients, rather than from a saturation of effect. This is congruent with the reported pathophysiological change of increased plasma ACE and renin activity in hepatic cirrhosis.


Subject(s)
Humans , Absorption , Blood Pressure , Circadian Rhythm , Colon, Sigmoid , Healthy Volunteers , Linear Models , Liver Cirrhosis , Liver , Pharmacokinetics , Plasma , Receptors, Angiotensin , Renin
6.
The Korean Journal of Physiology and Pharmacology ; : 99-109, 2013.
Article in English | WPRIM | ID: wpr-727483

ABSTRACT

The aim of this study was to determine whether fimasartan, a newly developed AT1 receptor blocker, can affect the CA release in the isolated perfused model of the adrenal medulla of spontaneously hypertensive rats (SHRs). Fimasartan (5~50 microM) perfused into an adrenal vein for 90 min produced dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high K+ (56 mM, a direct membrane depolarizer), DMPP (100 microM) and McN-A-343 (100 microM). Fimasartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with fimasartan (15 microM), the CA secretory responses evoked by Bay-K-8644 (10 microM, an activator of L-type Ca2+ channels), cyclopiazonic acid (10 microM, an inhibitor of cytoplasmic Ca(2+)-ATPase), and veratridine (100 microM, an activator of Na+ channels) as well as by angiotensin II (Ang II, 100 nM), were markedly inhibited. In simultaneous presence of fimasartan (15 microM) and L-NAME (30 microM, an inhibitor of NO synthase), the CA secretory responses evoked by ACh, high K+, DMPP, Ang II, Bay-K-8644, and veratridine was not affected in comparison of data obtained from treatment with fimasartan (15 microM) alone. Also there was no difference in NO release between before and after treatment with fimasartan (15 microM). Collectively, these experimental results suggest that fimasartan inhibits the CA secretion evoked by Ang II, and cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of fimasartan may be mediated by blocking the influx of both Na+ and Ca2+ through their ion channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the Ca2+ release from the cytoplasmic calcium store, which is relevant to AT1 receptor blockade without NO release.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Adrenal Medulla , Angiotensin II , Biphenyl Compounds , Calcium , Chromaffin Cells , Cytoplasm , Dimethylphenylpiperazinium Iodide , Indoles , Ion Channels , Membranes , NG-Nitroarginine Methyl Ester , Pyrimidines , Rats, Inbred SHR , Tetrazoles , Veins , Veratridine
SELECTION OF CITATIONS
SEARCH DETAIL